注册登录
返回论坛最新回复
  • 楼主
  • 英飞凌客服
  • |  帖子(884)   |   高级工程师(3299)   |  发消息
  • 2016-11-22 17:18
主题:  射频功率放大器的效率如何提升?
热力学的基本规律揭示出没有电子设备可以实现100%的效率——虽然开关电源比较接近(达到98%)。但不幸的是任何产生RF功率的器件目前都无法 达到或者接近理想的性能,因为将直流功率转换为射频产品功率过程中面临太多的缺陷,包括整个信号路径传输造成的损耗,转到工作频率时的损耗,以及该器件固有特 性损耗等。结果,MIT科技评论的一篇文章曾毫不客气的这样评价RF功率放大器,“它是一个非常低效的硬件。”


毫不奇怪的是,RF功率产品的每一环节厂家,从半导体到放大器再到发射器,以及大学和国防部,每年都花费大量的时间和财力,以提升RF功率器件的效率。这么做有充足的理由:即使是效率的细微提升,也可以延长电池驱动类产品的工作时间,并降低无线基站每年的电力消耗。图1显示了RF部分占基站整体功耗的比例情况。

58340d1ec71c4_small.jpg

图1:将基站电力消耗中的各种射频产品相关部分加起来,最终结果值将相当大。

幸运的是,经过连年不断努力提升RF效率,这些情况在逐渐改变。这些工作有一些是在器件级,有些则采用了一些创新技术,比如包络跟综,数字预失真/波峰因子降低方案,以及采用比常见AB类级别更高级的放大器。

放大器设计的一个重大转变是5年内就成为基站放大器标准的Doherty 架构。自从贝尔实验室(随后成为了西屋电气的一部分)的Doherty 博士在1936年发明这种架构后,它大部分时间处于沉寂状态,只在几个应用中使用过。
 
Doherty 的研究创造了一种新的放大器结构,在输入信号具备很高峰均比(PAR)时,还可以提供极高的功率附加效率。事实上,如果设计得当,相较于标准并行AB类放 大器,Doherty 放大器的效率可提升11%到14%。

当然,在1936年以后的许多年间,只有很少类信号具备这些特性,如通信系统中 使用调制方案的AM和FM便没有。而目前,几乎每一个无线系统都产生高PAR信号,从WCDMA到CDMA2000再到任何采用正交频分复用的系统 (OFDM),例如WiMAX,LTE和最近的香饽饽Wi-Fi。

58340d380b5f8_small.jpg

图2:一个典型的Doherty放大器

经典Doherty放大器(图2),可以归类于负载调制架构,实际上由两个放大器组成:一个载波放大器偏置在AB类模式下进行操作,而峰值放大器偏置成C类 模式。一个功分器将输入信号以90°相位差等分给每个放大器。放大后,信号通过功率耦合器被重新合成。两个放大器在输入信号处于峰值时会同时操作,每个都表现为一个负载阻抗,以最大化输出功率。

然而,随着输入信号功率的下降,C类峰值放大器被关闭,只有AB类载波放大器仍然工作。在较低的功率电平时,AB类载波放大器表现为经调制的负载阻抗,以提升效率和增益。随着该架构重新焕发活力,Doherty放大器设计在快速的迭代中取得了重大进展,也获得了巨大成功。

当然,没有任何架构是完美的。Doherty放大器的线性度和输出功率比双AB类放大器都稍差些。这给我们带来了另一个重要的电路,也已成为当今通信环境中必不可少的选择:模拟和数字线性化技术。该技术中使用最广泛的是数字预失真(DPD),有时与波峰因子降低(CFR)组合使用。DPD和CFR都可以大幅 降低Doherty的失真,精心的器件和放大器设计可以最大限度地降低线性损失。然而,它们没有严格定义在Doherty放大器中使用,在其它放大器结构 中使用效果也相当明显。

1、提升线性度

现代数字调制技术要求放大器的线性度足够高,否则会出现互调失真从而降低信号质量。不幸的是,放大器性能最佳时,它们都已接近饱和电平,随后,它们变得非线性化,RF功率输出随输入功率增加而下降,并且开始出现显著失真。这种失真会导致相邻信道或服务的串扰。结果,设计人员通常将RF输出功率回退到一个“安全区”,以确保线性度。当他们这样做时,多个RF晶 体管是必需的,以达到给定的RF输出功率,这将增加电流消耗,并导致续航时间缩短,或在基站中会造成更高的运营成本。

DPD有效地在放大器 的输入端引入了“反失真”,消除了放大器的非线性。其结果是,放大器不需要回退到最佳工作点,从而不需要更多的射频产品功率器件。由于放大器变得更加高效,带 来的好处是散热成本的降低和所有重要电力消耗的减少。CFR工作时,通过减小输入信号的峰均比来持续检查失真情况,这种作法降低了信号的峰值,以使信号通 过放大器时不致产生削波或失真。当DPD和CFR一起使用时,可以取得更大的增益。
2、异相功率放大器方法 

另一个技术,是近80年前由Henri Chireix 发明并持有的专利技术,通常被称为“outphasing”(异相功率放大器,负载调制技术家族的一员),目前被富士通、恩智浦等用于提升放大器效率。它 结合了两种非线性RF功率放大器,由不同相位的信号驱动两个放大器。因为对相位进行了控制,使得当输出信号耦合时,使用B类RF功率放大器可以实现效率增 益。谨慎的设计技术,特别是选择适当的电抗,可以将系统优化到一个特定的输出幅度,这将带来两倍的效率提升(至少理论上如此)。

富士通去年宣布其已经在某个功率放大器中采用了outphasing方法,集成紧凑、低损耗的功率耦合电路,并带有一个基于DSP的相位误差校正补偿电路,相比现有 放大器普遍的65%传输时间,该放大器传输时间可以超过95%。对该设计进行测试,这种功率放大器的峰值输出可以达到100瓦;平均电效率从50%提高到70%。

输入信号被分成具有恒定幅度和相位变化的两个信号。振幅依RF功率器件设定,功率耦合电路重构源信号波形。先前,当源信号重构时,耦合精度损失需要确定相位差,阻止了该技术的商用。富士通使用的耦合器具有更短的信号路径,降低了损耗并增大了带宽。

3、恩智浦极具前景的开发 

Outphasing 机制没有负载调制效果的一个变体被称为非线性概念的线性放大(LINC),采用一个分离耦合器和放大级驱动到饱和,并能有效地提高线性度和峰值效率。但 LINC放大器效率相对较低,因为每个放大器工作在一个恒定功率上,即使低RF输出电平时也如此。Chireix修正了这一点,通过结合 outphasing和一个非分离耦合器和负载调制,从而提升了平均效率。恩智浦半导体公司做了进一步提升,用outphasing控制两个开关模式的 RF放大器,使它们适应高波峰因子信号。该公司正在将Chireixoutphasing技术与GaN HEMT开关式E类放大器结合起来(图3)。

58340d560bda9_small.jpg

图3:简化后的Chireix 异相功率放大器结构框图。
 
恩智浦开发并获得专利的新驱动器技术通过控制相位关系,使放大器在约25%的带宽上达到高效率。这引发了一种新架构,通过结合E类放大器和负载调制以在退出饱和时保持放大器的高效率,这使得它们能够适应各种复杂波形。恩智浦为基于GaN器件的E级RF功率放大器提供了参考设计,并附带了Chireix相关的技术资料。

4、包络跟踪

另一个放大器设计人员关注的重点技术是包络跟踪,这种技术中,施加到功率放大器的电压被连续地调整,以确保它工作在峰值区域,从而使功率最大。相对于典型功率放大器设计中DC-DC转换器提供的固定电压,包络跟踪电源以一个高带宽、低噪声波形调制连接到该放大器的电源,该波形则被同步到瞬时包络信号。

在CMOS RF功率器件中使用包络跟踪技术具备相当大的吸引力。Nujira多年来一直在开发这种技术。他们已经表明,该技术能够克服CMOS RF放大器应用中因非线性导致的缺点。CMOS功率放大器一直被诟病是目前高PAR调制技术的一个糟糕选择,因为它们固有的线性度较差,这就要求它们必须回退以减小失真。当CMOS放大器在较高的RF功率电平工作时,会出现削波和失真。

然而,Nujira在其专有的包络跟踪技术中结合了其专利ISOGAIN线性化技术来消除线性问题,而无需使用DPD。使用这种技术的设备达到了高效率目标,已经在其它方面实现了与GaAs同样的性能。所有研究CMOS放大器的一个巨大好处是,CMOS器件在整个电子行业中普遍存在,有很多代工厂家支撑,因此相对便宜。因为它基于硅,也可以在功率放大器芯片上直接集成控制和偏置电路。

5、其他完全不同的方法

另一个放大器技术由Eta Devices倡导,这是从美国麻省理工学院剥离出来的公司,由两位电气工程教授Joel Dawson 和David Perreault以及爱立信和华为的一位前功放研究员共同创建。其不对称多级Outphasing(AMO)技术由MIT开发,该公司是由ADI公司联合创始人Ray Stata和他的风险投资公司Stata Venture Partners联合投资。

该公司的首要目标是新兴市场,包括燃料方面每年耗资150亿美元的多达64万台的柴油发电机功率基站,其次是智能手机市场。今年二月,Eta Devices在西班牙巴塞罗那举办的移动通信世界大会先进LTE部分上展示了其Eta5设备,该设备的发射信道超过80-MHz。

Eta Devices大胆宣称,它的ETAdvanced(高级包络跟踪)技术,预计可减少50%的基站能源成本。还宣称,它可以将智能手机电池续航时间提升一倍。前提是,所述放大器的RF功率晶体管在待机模式和发射模式时同时消耗功耗,而提升效率的唯一途径是将待机功率降低到最低可能水平。
在低功耗待机模式和高功率输出之间进行转换,会导致失真现象,现有的系统为持续检测这一状况,需要维持高待机功率水平,带来的代价是高功耗。Eta Devices的做法是,通过每秒高达2000万次的采样,选择出晶体管两端消耗最低功耗的电压。

另一个问题是,该公司解释说LTE Advanced 以及100 MHz带宽要求将会为RF功率放大器带来巨大需求。仅仅通过包络跟踪无法适应这种情况,因为它不能支持比40Mhz更宽的信道。据该公司的说法,ETAdvanced支持高达160 MHz的信道,因此它可以同时满足高级LTE和802.11ac标准的Wi-Fi。使用其技术的基站可以非常小,该公司声称,它已经开发出首个平均效率大于70%的LTE发射机。

6、总结

如果完全描述目前为提升RF功率效率所做的工作,可以写一大本书。这些内容不仅局限于本文所讨论的范围,也包括不同类放大器的使用以及配套技术,这些技术的结合可以产生有意义的结果。不管取得的进步有多大,可以肯定的是,只要更高数据速率需求依然存在,对更高效率的探索也必将继续下去。

  • 1楼
  • applebad
  • |  帖子(226)  |  工程师(656)  |  发消息| 最新回复
  • 2016-12-20 00:15
倒数1
 
很早以前研究过多合体技术,那时也是看的NXP的设计资料。